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Abstract Given a closed convex cone P with nonempty interior in a locally convex
vector space, and a set A ⊂ Y, we provide various equivalences to the implication

A ∩ (−int P) = ∅ �⇒ co(A) ∩ (−int P) = ∅,

among them, to the pointedness of cone(A+ int P). This allows us to establish an opti-
mal alternative theorem, suitable for vector optimization problems. In addition, we
present an optimal alternative theorem which characterizes two-dimensional spaces
in the sense that it is valid if, and only if, the space is at most two-dimensional.
Applications to characterizing weakly efficient solutions through scalarization; the
zero (Lagrangian) duality gap; the Fritz–John optimality conditions for a class of
nonconvex nonsmooth minimization problems, are also presented.

Keywords Theorem of the alternative · Vector optimization · Generalized
subconvexlike set · Weakly efficient solution

1 Introduction and formulation of the problem

Alternative theorems are very useful to derive many important results in convex and
nonconvex optimization theory: the existence of Lagrange multipliers, duality results,
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scalarization of vector functions, etc. To be precise, let us consider a real locally convex
topological vector space Y and a closed convex cone P ⊆ Y such that int P �= ∅. We
denote by Y∗ the topological dual space of Y, and by P∗ the (positive) polar cone of P.
Given a nonempty set A ⊆ Y, alternative theorems assert the validity of exactly one
of the following assertions:

∃ a ∈ A such that a ∈ −int P, (1)

∃ p∗ ∈ P∗, p∗ �= 0, such that 〈p∗, a〉 ≥ 0 ∀ a ∈ A. (2)

Here 〈·, ·〉 stands for the duality pairing between Y and Y∗ and int P denotes the
topological interior of P. We recall that P∗ is defined by

P∗ = {
p∗ ∈ Y∗ : 〈p∗, p〉 ≥ 0 ∀ p ∈ P

}
.

The closedness and convexity of the cone P is equivalent to P = P∗∗ by the bipolar
theorem. In this case,

p ∈ P ⇐⇒ 〈p∗, p〉 ≥ 0 ∀ p∗ ∈ P∗.

Moreover,

p ∈ int P ⇐⇒ 〈p∗, p〉 > 0 ∀ p∗ ∈ P∗\{0}. (3)

A separation theorem for convex sets and the above remarks allow us to write (1)
and (2) in an equivalent way as, respectively,

A ∩ (−int P) �= ∅, (4)

co(A) ∩ (−int P) = ∅, (5)

where “co(A)” stands for the convex hull of A. While the inconsistency of both asser-
tions (4) and (5) is straightforward, the proof of the implication

A ∩ (−int P) = ∅ �⇒ co(A) ∩ (−int P) = ∅, (6)

requires a careful analysis due to the lack of convexity of A. One of the goals of the
present paper is to characterize those sets A for which implication (6) is true. Most
papers appearing in the literature (see for instance [1, 10, 13, 19, 20] and the references
therein) were concerned with providing some (sufficient) conditions implying (6). In
this spirit various generalizations of the usual notion of convexity were introduced.
Some of them will be discussed in Sect. 3.

Several of our results can be derived for cones P with nonempty quasi-interior,
thus allowing the (topological) interior to be empty. In Sect. 2, we give the necessary
definitions, together with some elementary results about cones. In Sect. 3, we show
that (5) can be restated in terms of pointedness of the set cone(A + int P). At the
same time, we compare several of the previously introduced notions of generalized
convexity for sets and vector valued functions, and show equivalences between them.
As a consequence of these results, we are able to derive and strenghten several of
the already known alternative theorems. In Sect. 4, we provide a complete character-
ization of those sets A in R

2 for which (6) holds, and show that this characterization
holds if and only if the space is at most two-dimensional.
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As an illustrative application of our main result, we characterize in Sect. 5 those
mappings F: K → R

2 for which the equivalence

x̄ ∈ Ew ⇐⇒ x̄ ∈
⋃

p∗∈P∗,p∗ �=0

argminK〈p∗, F(·)〉

holds, where Ew denotes the set of weakly efficient solutions to F on K (see Sect. 5).
Such an equivalence was crucial to develop a well-posedness theory in vector optimi-
zation in [5]. Quadratic scalarization instead of linear was employed in [6] to compute
efficient solutions.

Other applications concern the zero (Lagrangian) duality gap, and the Fritz–
John optimality conditions for a class of nonconvex minimization problems without
smoothness.

2 Some basic notation and preliminaries

Throughout the paper, X will be a vector space and Y a real locally convex topological
vector space. We will denote by 〈·, ·〉 the duality pairing between Y and Y∗. Given
x, y ∈ X we set [x, y] = {tx + (1 − t)y : t ∈ [0, 1]}. The segments

]
x, y

]
etc are defined

analogously.
By cone we mean a set P ⊆ Y such that tP ⊆ P ∀ t ≥ 0; given A ⊆ Y, cone(A)

stands for the smallest cone containing A, that is,

cone(A) =
⋃

t≥0

tA,

whereas cone(A) denotes the smallest closed cone containing A: obviously cone(A) =
cone(A), where A denotes the closure of A. Furthermore, we put

cone+(A)
.=

⋃

t>0

tA.

Evidently, cone(A) = cone+(A) ∪ {0}, and therefore, cone(A) = cone+(A). In
[13, 19, 20] the notation cone(A) instead of cone+(A) is employed.

Given a convex subset K of Y, an element x ∈ K is called a quasi-interior point if
there is no closed hyperplane supporting K at x; i.e., if for all x∗ ∈ Y∗ the following
implication holds:

〈
x∗, y

〉 ≥ 〈
x∗, x

〉
for all y ∈ K ⇒ x∗ = 0.

Equivalently, x is an quasi-interior point if and only if cone(K − x) = Y (see for
instance [3] for details and references on quasi-interiors). We will denote by qint K
the set of quasi-interior points of K. If int K �= ∅, then int K = qint K. For this
reason, all results in this paper involving qint K are also true for int K, provided the
latter set is nonempty. On the other hand, for any p ∈ [1, +∞) the positive cone
lp+ = {(xi)i∈N ∈ lp : xi ≥ 0, ∀i ∈ N} of the space lp = {

(xi)i∈N :
∑

i∈N
|xi|p < +∞}

has
nonempty quasi-interior, but its interior (and even the relative algebraic interior) is
empty. Quasi-interior points share some properties of the interior points; for instance,
if x ∈ qint K and y ∈ K then

[
x, y

[ ⊆ qint K. In particular, qint K is convex and dense
in K whenever it is not empty.
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If P is a closed convex cone, then it is easy to check that x ∈ qint P if and only if
〈x∗, x〉 > 0 for all x∗ ∈ P∗\{0}, or equivalently if the set B = {x∗ ∈ P∗ : 〈x∗, x〉 = 1} is a
w∗-closed base for P∗ (we recall that a convex set B is called a base for P∗ if 0 is not
in the w∗-closed hull of B and P∗ = cone(B)). If P �= Y, then 0 /∈ qint P. Note also
that qint P = cone+(qint P) and P + qint P = qint P.

Assumption In the rest of the paper, P ⊆ Y will be a closed convex cone with P �= Y
and qint P �= ∅.

Some elementary properties of sets to be used later are collected in the next prop-
osition.

Proposition 2.1 Let A ⊆ Y be any nonempty set.

(a) αA + (1 − α)A ⊆ cone(A) ∀ α ∈ ]0, 1[ ⇐⇒ cone(A) is convex ⇐⇒ co(A) ⊆
cone(A).

(b) αA + (1 − α)A ⊆ cone+(A)∀ α ∈ ]0, 1[ ⇐⇒ cone+(A) is convex ⇐⇒ co(A) ⊆
cone+(A).

(c) cone+(A + M) = cone+(A) + M provided that M is such that tM ⊆ M ∀ t > 0.
(d) cone(A) + M ⊆ cone(A + M) and cone(A) + M = cone(A + M), provided that

M is a cone.
(e) cone(A+qint P) = cone(A+P), provided that P is a convex cone with qint P �= ∅.
(f) cone+(A + int P) is convex ⇐⇒ cone(A + int P) is convex ⇐⇒ cone(A + P) is

convex, provided that P is a convex cone with int P �= ∅.

Proof The proof of (a)–(c) is straightforward. (d): According to (c), cone+(A)+M =
cone+(A + M) ⊆ cone(A + M). On the other hand, for a fixed a ∈ A, every p ∈ M
can be obtained as the limit of 1

n (a + np). Hence M ⊆ cone(A + M) and this shows
the inclusion in (d). Since obviously cone(A + M) ⊆ cone(A) + M, the equality of
closures also follows.
(e): Since qint P ⊆ P, we have cone(A+qint P) ⊆ cone(A+P). Also, from P ⊆ qint P
it follows that A+P ⊆ A+qint P ⊆ A + qint P ⊆ cone(A+qint P), hence (e) follows.
(f): If cone+(A + int P) is convex, then it easily follows that cone(A + int P) is convex.
By using (e), we deduce that cone(A + P) is convex. If cone(A + P) is convex, then
cone+(A + int P) is convex by Theorem 2.6 in [14]. �

Remark 2.2 Proposition 2.1(f) does not hold with qint P in the place of int P. Indeed,
let Y = l1 and P = l1+. Then qint l1+ = {

(αi)i∈N : αi > 0
}

while int l1+ = ∅. Set

A = l1\
(
−qint l1+

)
= {

(αi)i∈N : ∃ i ∈ N with αi ≥ 0
}

.

Each (ai)i∈N ∈ l1 can be written as a limit of a sequence of elements each of which
has a finite number of nonzero coordinates. Thus A = l1 and cone(A + l1+) = l1 is
convex. However, one can readily check that cone+(A + qint P) = A + qint P ={
(αi)i∈N : ∃ i ∈ N with αi > 0

}
is not convex.

3 The alternative theorem in spaces of arbitrary dimension

In search of conditions implying the validity of (6), several relaxed notions of convex-
ity have appeared in the literature. Before reviewing and comparing some of them,
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we will first reformulate the conclusion of the alternative theorem in terms of the
cone cone

(
A + qint P

)
. We recall the definition of pointedness for a cone that is not

necessarily convex (see for instance [12]).

Definition 3.1 A cone K ⊆ Y is called “pointed” if x1 + · · · + xk = 0 is impossible
for x1, x2, · · · , xk in K unless x1 = x2 = · · · = xk = 0.

Our first result is the following:

Theorem 3.2 Let A ⊆ Y be any nonempty set and P ⊆ Y, P �= Y, be a convex and
closed cone such that qint P �= ∅. The following assertions are equivalent:

(a) cone(A + qint P) is pointed;
(b) co(A) ∩ (−qint P) = ∅.

Proof We first prove

cone(A + qint P) is pointed �⇒ A ∩ (−qint P) = ∅. (7)

If there exists x ∈ A ∩ (−qint P), then x = 2(x − x
2 ) ∈ cone(A + qint P) and −x =

x + (−2x) ∈ A + qint P ⊆ cone(A + qint P). By pointedness, x = 0, hence 0 ∈ qint P.
As noted in Sect. 2, this implies P = Y, a contradiction.

Now assume that (a) holds. If (b) does not hold, then there exists x ∈ −qint P such
that x = ∑m

i=1 λiai with
∑m

i=1 λi = 1, λi > 0, ai ∈ A. Thus, 0 = ∑m
i=1 λi(ai − x). Using

(a) we infer that λi(ai − x) = 0 for all i = 1, . . . , m. This contradicts (7).
Conversely, assume that (b) holds. If cone(A+qint P) is not pointed, then there exist

xi ∈ cone(A + qint P)\{0}, i = 1, 2, . . . n, such that
∑n

i=1 xi = 0. Each xi can be written
as xi = λi(yi + ui) with λi > 0, yi ∈ A and ui ∈ qint P. Hence

∑n
i=1 λiyi = −∑n

i=1 λiui.
Setting µi = λi/

∑n
j=1 λj we get

∑n
i=1 µiyi = −∑n

i=1 µiui ∈ co(A) ∩ (−qint P), a
contradiction. �

When int P �= ∅, then by the separation theorem co(A) ∩ (−qint P) = ∅ is equiv-
alent to the existence of p∗ ∈ P∗\{0} such that 〈p∗, y〉 ≥ 0 for all y ∈ A. Thus, in case
the set A is the image of some vector-valued mapping, the previous theorem implies
the following

Corollary 3.3 Let K ⊆ X be any nonempty set, P ⊆ Y be a closed convex cone such
that int P �= ∅, and G: K → Y be any mapping. Then the following assertions are
equivalent:

(a) cone(G(K) + int P) is pointed;
(b) ∃ p∗ ∈ P∗, p∗ �= 0, 〈p∗, G(x)〉 ≥ 0 ∀ x ∈ K.

We now recall the most general among the relaxed notions of convexity that were
used in alternative theorems.

Definition 3.4 Let P ⊆ Y be a closed convex cone with nonempty interior. A set
A ⊆ Y is called:

(a) generalized subconvexlike [20] if ∃ u ∈ int P, ∀ x1, x2 ∈ A, ∀ α ∈ ]0, 1[, ∀ ε > 0,
∃ ρ > 0 such that

εu + αx1 + (1 − α)x2 ∈ ρA + P; (8)
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(b) presubconvexlike if ∃ u ∈ Y, ∀ x1, x2 ∈ A, ∀ α ∈ ]0, 1[, ∀ ε > 0, ∃ ρ > 0 such
that (8) holds;

(c) nearly subconvexlike [13, 19] if cone(A + P) is convex.

Note that the definition of presubconvexlike sets is a transcription of an analogous
definition for Y-valued functions given in [21]. Also, from Proposition 2.1(f) it follows
that (c) above is equivalent to the convexity of cone+(A + int P) and also to the
convexity of cone(A+ int P). In fact, we will show that all three notions of generalized
convexity of sets given in Definition 3.4 are equivalent.

Proposition 3.5 In Definition 3.4, (a)–(c) are equivalent.

Proof (a) ⇔ (b): It is obvious that (a) implies (b). If A is presubconvexlike, let
u ∈ Y be the element whose existence is required by (b). Since int P − int P = Y
(see, e.g. [11]) we can write u = v − w with v, w ∈ int P. By assumption, for every
x1, x2 ∈ A, α ∈ ]0, 1[, ε > 0 there exists ρ > 0 such that (8) holds. Then

εv + αx1 + (1 − α)x2 ∈ ρA + P + εw ⊆ ρA + P.

Thus, A is generalized subconvexlike.
(a) ⇒ (c): In Theorem 2.1 of [20], it is shown that a generalized subconvexlike set

A is such that the set cone+(A)+ int P is convex. By Proposition 2.1(c)(f), cone(A+P)

is convex.
(c) ⇒ (a): If cone(A + P) is convex then by Proposition 2.1(f), cone+(A + int P) is

convex. From (b) of the same proposition applied to the set A + int P it follows that

αA + (1 − α)A + int P ⊆ cone+(A + int P) ∀ α ∈ ]0, 1[.
This allows us to conclude that A is generalized subconvexlike. �

Thus, the two alternative theorems in [19, 20] (with “int” instead of “qint”) can be
unified and extended as follows:

Theorem 3.6 Let A ⊆ Y be any nonempty set. Assume that A ∩ (−qint P) = ∅. Then

cone+(A + qint P) is convex �⇒ co(A) ∩ (−qint P) = ∅.

It is now clear that Theorem 3.6 is a consequence of Theorem 3.2 and the following
easy proposition:

Proposition 3.7 If cone+(A+qint P) is convex and A∩ (−qint P) = ∅, then cone(A+
qint P) is pointed.

Proof Since cone(A + qint P) is also a convex cone, we have to show that whenever
x, −x ∈ cone(A + qint P), then x = 0. Indeed, assume that x �= 0. Then x, −x ∈
cone+(A + qint P). This last set is convex, hence 0 = x + (−x) ∈ cone+(A + qint P).
Thus, there exist λ > 0, y ∈ A and u ∈ qint P such that 0 = λ(y + u). Then y ∈
A ∩ (−qint P), a contradiction. �

The converse of Proposition 3.7 (or Theorem 3.6) does not hold, as shown by the
following example.
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Example 3.8 Let us consider in R
3 the polyhedral (closed convex) cone P = cone(B),

where

B =
{
(1, −x2, x3) : 0 ≤ x2, 0 ≤ x3, x2 + x3 ≤ 1

}

and the set

A =
{(

x1, 1,
√

1 − x2
1

)
: 0 ≤ x1 ≤ 1

}
.

It is not difficult to check that co(A) ∩ (−int P) = ∅ thus cone(A + int P) is pointed.
However, we will see that cone(A + P) is nonconvex. To this end, it is enough to
show that z = ( 1

2 , 1, 1
2 ) �∈ cone(A + P) since z = 1

2 x + 1
2 y with x = (0, 1, 1) ∈ A and

y = (1, 1, 0) ∈ A. Assume on the contrary that there exist sequences 0 ≤ xk
1 ≤ 1,

0 ≤ xk
2 ≤ 1, 0 ≤ xk

3 ≤ 1 and βk, λk ≥ 0 such that

λk

(
xk

1 + βk

)
→ 1

2
, (9)

λk

(
1 − βkxk

2

)
→ 1, (10)

λk

(√
1 − (xk

1)2 + βkxk
3

)
→ 1

2
. (11)

If λk is bounded, we may assume that λk → λ for some λ ≥ 0. From (10), we obtain
λ ≥ 1. On the other hand, up to a subsequence xk

1 → x1, thus (9) implies x1 ≤ 1
2 .

By (11) we get
√

1 − x2
1 ≤ 1

2 , which in turn gives x1 ≥
√

3
2 , contradicting a previous

inequality. We now assume that λk → +∞. From (9) it follows xk
1 → 0. Taking k

sufficiently large, (11) yields a contradiction.

The preceding definitions of relaxed convexity for sets induce corresponding defi-
nitions for vector valued mappings: given a nonempty subset K of X, a multivalued
mapping G : K ⇒ Y is called generalized subconvexlike [20] (respectively, nearly
subconvexlike [13, 19], presubconvexlike [21]) if the set G(K) is generalized subcon-
vexlike (resp., nearly subconvexlike, presubconvexlike) . According to Proposition
3.5, these three notions are identical. Other definitions of generalized convexity for
(single-valued) vector valued functions in view of using them to alternative theo-
rems were given in [10, 16]. A mapping G: K → Y is called ∗-quasiconvex [10] if
〈x∗, G(·)〉 is quasiconvex for all x∗ ∈ P∗. It is called naturally-P-quasiconvex [16] if for
all x, y ∈ K, G([x, y]) ⊆ [

G(x), G(y)
] − P. We will first show that these notions are

equivalent:

Proposition 3.9 Let K ⊆ X be any nonempty convex set and P ⊆ Y be a closed convex
cone with nonempty interior. Then a mapping G: K → Y is ∗-quasiconvex if and only
if it is naturally-P-quasiconvex.

Proof Assume that G is naturally-P-quasiconvex. We need to check that given t ∈ R

and x∗ ∈ P∗, the set Kt = {z ∈ K : 〈x∗, G(z)〉 ≤ t} is convex. Indeed, if x, y ∈ Kt then
by natural-P-quasiconvexity of G, for all z ∈ [x, y] there exists λ ∈ [0, 1] and u ∈ P
such that G(z) = λG(x) + (1 − λ)G(y) − u. Hence,

〈x∗, G(z)〉 = λ
〈
x∗, G(x)

〉 + (1 − λ)
〈
x∗, G(y)

〉 − 〈
x∗, u

〉 ≤ t
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thus z ∈ Kt, so Kt is convex.
Conversely, assume that G is not naturally-P-quasiconvex. Then there exist x, y ∈ K

and z ∈ ]x, y[ such that for all µ ∈ [0, 1], G(z) �∈ µG(x) + (1 − µ)G(y) − P. Thus for
every µ ∈ [0, 1] there exists x∗ ∈ Y∗ \ {0} such that

〈x∗, G(z)〉 > 〈x∗, µG(x) + (1 − µ)G(y) − u〉 ∀ u ∈ P.

Since P is a cone, we get 〈x∗, u〉 ≥ 0 for all u ∈ P, i.e., x∗ ∈ P∗, and also
〈x∗, G(z) − µG(x) − (1 − µ)G(y)〉 > 0. Since by assumption int P �= ∅, there ex-
ists a w∗-compact base B of P∗. Setting f (y∗, µ) = 〈y∗, G(z) − µG(x) − (1 − µ)G(y)〉
we get

max
y∗∈B

min
µ∈[0,1]

f (y∗, µ) = min
µ∈[0,1]

max
y∗∈B

f (y∗, µ) > 0.

Hence there exists x∗ ∈ B such that

〈x∗, G(z)〉 > µ〈x∗, G(x)〉 + (1 − µ)〈x∗, G(y)〉 ∀ µ ∈ [0, 1].
In particular, we get 〈x∗, G(z)〉 > 〈x∗, G(x)〉 and 〈x∗, G(z)〉 > 〈x∗, G(y)〉. Thus G is not
∗-quasiconvex. �

In [10] it is proven that implication (6) holds for A = G(K) under the ∗-quasicon-
vexity of G and the assumption

∀p∗ ∈ P∗, the restriction of 〈p∗, G(·)〉 on any line segment of K is lower

semicontinuous. (12)

We will see that the ∗-quasiconvexity of G together with (12) imply the convexity
of cone(G(K) + int P) thus, in particular, that G is nearly subconvexlike. This follows
from the next proposition which is of interest by itself. We refer the reader to [9] for
the definition of upper semicontinuity and other properties of multivalued mappings
that will be used in the proof.

Proposition 3.10 Let K ⊆ X be any nonempty convex set, P ⊆ Y be a closed convex
cone and G: K → Y be naturally-P-quasiconvex and satisfying (12). Then

∀ x, y ∈ K,
[
G(x), G(y)

] ⊆ G([x, y]) + P. (13)

Proof Given x, y ∈ K, define H: [x, y] ⇒
[
G(x), G(y)

]
by H(z) = (G(z) + P) ∩([

G(x), G(y)
])

. We show first that H is closed. Let (zn, wn), n ∈ N, be a sequence in
the graph of H, converging to (z, w). Then wn ∈ H(zn) ⊆ [

G(x), G(y)
]
. Obviously,

w ∈ [
G(x), G(y)

]
. Also, for every n ∈ N there exists vn ∈ P such that wn = G(zn)+vn.

For each p∗ ∈ P∗ we get by assumption (12):

〈p∗, w − G(z)〉 ≥ lim 〈p∗, wn〉 − lim inf 〈p∗, G(zn)〉
= lim 〈p∗, wn〉 + lim sup 〈p∗, −G(zn)〉
= lim sup 〈p∗, vn〉 ≥ 0.

Since this is true for all p∗ ∈ P∗, we deduce that w − G(z) ∈ P, i.e., w ∈ H(z) and
H is closed. Hence, H is upper semicontinuous.

Also, for every z ∈ [
x, y

]
, H(z) �= ∅ by the definition of natural-P-quasiconvexity.

In addition, H(z) is connected, being convex. Hence, the image of
[
x, y

]
through H

is connected (cf. Proposition 2.24, p 43 in [9]). This image is a subset of the line seg-
ment

[
G(x), G(y)

]
. Since G(x) ∈ H(x) and G(y) ∈ H(y), we deduce that H

([
x, y

]) =
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[
G(x), G(y)

]
. Thus, for every w ∈ [

G(x), G(y)
]

there exists z ∈ [
x, y

]
such that w ∈

H(z), i.e., w = G(z) + u for some u ∈ P. This shows inclusion (13). �

We deduce the following:

Corollary 3.11 Let X, Y, P, G be as in the previous proposition. Then G(K) + P is
convex.

Proof It is sufficient to show that whenever t ∈ [0, 1], x, y ∈ K and u ∈ P then
tG(x) + (1 − t)G(y) + u ∈ G(K) + P. But this is obvious in view of the proposition.

�

Thus, given a cone P with int P �= ∅, if a mapping G is ∗-quasiconvex (or, equivalently,
naturally-P -quasiconvex) and satisfies (12), then G(K)+P is convex. This implies that
G is nearly subconvexlike, so the alternative theorems of [10, 16] are included in The-
orem 3.6 and in particular in Theorem 3.2. The converse does not hold: the mapping
G(x) = (x, f (x)), x ∈ [−1, 1], where f (x) = 1−|x|, is clearly nearly subconvexlike (with
Y = R

2, P = R
2+), but the real-valued function x ∈ [−1, 1] �→ 〈(0, 1), (x, f (x))〉 = f (x)

is not quasiconvex, that is, G is not ∗-quasiconvex.

4 Characterizing the two-dimensionality through the alternative theorem

According to Theorem 3.6 (see also Proposition 2.1(f)), whenever A ∩ (−int P) = ∅
holds, the convexity of cone(A+int P) is a sufficient condition for co(A)∩(−int P) = ∅
to hold. We will now see that in case Y = R

2, it is also necessary.

Theorem 4.1 Let P ⊆ R
2 be a convex closed cone such that int P �= ∅, and A ⊆ R

2

be any nonempty set satisfying A ∩ (−int P) = ∅. Then the following assertions are
equivalent:

(a) co(A) ∩ (−int P) = ∅;
(b) cone(A + P) is convex;
(c) cone(A + int P) is convex;
(d) cone(A) + P is convex;
(e) cone(A + P) is convex.

Proof According to Proposition 2.1(f), (c) ⇐⇒ (e). It is obvious that (b) implies (e).
Also, (d) implies (e) since cone(A + P) is the closure of cone(A) + P (see Proposition
2.1(e)). Now assume that (c) holds. Then (e) holds. Due to the two-dimensionality of
the space, the convex cone cone(A + int P), being generated by the open set A + int P,
is the open cone contained between two half lines, together with the origin; its closure
cone(A + P) is the union of the former set and the half lines. Note that

cone(A + int P) ⊆ cone(A + P) ⊆ cone(A) + P ⊆ cone(A + P), (14)

where the last inclusion follows from Proposition 2.1(d). Thus, each of the cones
cone(A) + P, cone(A + P) appearing in (14) can be either cone(A + int P), or its union
with one of the halflines, or cone(A + P); in all cases, cone(A) + P, cone(A + P) are
convex, thus (b) and (d) hold. Consequently, (b)–(e) are equivalent.

That (e) implies (a) follows from Theorem 3.6 and Proposition 2.1(f).
(a) ⇒ (b): There exists x∗ ∈ R

2 such that 〈x∗, x〉 ≥ 〈x∗, u〉 for all x ∈ A and u ∈ −int P.
It follows that x∗ ∈ P∗ and 〈x∗, x〉 ≥ 0 for all x ∈ A, thus also for all x ∈ cone(A + P).
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Choose u ∈ int P. Let y, z ∈ A. Then obviously

cone({y}) + cone({u}) = {λy + µu : λ, µ ≥ 0}
is a closed convex cone containing y and u and contained in cone(A + P). The same
is true for the cone cone({z}) + cone({u}). The two cones have the line cone({u})
in common and their union is contained in cone(A + P), thus it is contained in
the halfspace

{
x ∈ R

2 : 〈x∗, x〉 ≥ 0
}
. Hence, the set B .= (cone({y}) + cone({u})) ∪

(cone({z}) + cone({u})) is a convex cone. Since y, z ∈ B we deduce that [y, z] ⊆ B ⊆
cone(A + P) thus co(A) ⊆ co(B) = B ⊆ cone(A + P). We deduce that cone(A + P)

is convex. �

We now show that the equivalence between (a) and one of (b)–(e) in Theorem 4.1
is characteristic of two-dimensional spaces. Since, say, (b) ⇒ (a) is a consequence of
Theorem 3.6, we only consider the implication (a) ⇒ (b) etc.

Theorem 4.2 Let Y be a locally convex topological vector space and P ⊆ Y be a
closed, convex cone such that int P �= ∅ and int P∗ �= ∅. The following assertions are
equivalent:

(a) for all sets A ⊆ Y one has

co(A) ∩ (−int P) = ∅ ⇒ cone(A + P) is convex;

(b) for all sets A ⊆ Y one has

co(A) ∩ (−int P) = ∅ ⇒ cone(A) + P is convex;

(c) for all sets A ⊆ Y one has

co(A) ∩ (−int P) = ∅ ⇒ cone(A + int P) is convex;

(d) Y is at most two-dimensional.

Proof We show first that (a) implies (d). Assume that the dimension of Y is at least
3. Let x∗ ∈ int P∗. Then for all x ∈ P\{0}, 〈x∗, x〉 > 0. Fix x ∈ int P, and choose
linearly independent y, z ∈ Y such that 〈x∗, y〉 = 〈x∗, z〉 = 0 (this is possible since
the dimension of the kernel of x∗ is at least 2). In particular, y and z are not zero.
Let A be the set [y + z, y + x] ∪ [y + x, y − z]. Every element w of A has the form:
w = t (y ± z) + (1 − t) (y + x) with t ∈ [

0, 1
]
. Hence 〈x∗, w〉 = (1 − t) 〈x∗, x〉 ≥ 0. It

follows that for every w ∈ co(A), 〈x∗, w〉 ≥ 0. Since for every u ∈ −int P, 〈x∗, u〉 < 0,
it follows that co(A) ∩ (−int P) = ∅.

We now show that cone(A + P) is not convex. Since y = y+z
2 + y−z

2 ∈ co(A) ⊆
co (cone (A + P)), it is sufficient to show that y /∈ cone (A + P). Suppose to the con-
trary that y ∈ cone (A + P). Then there exist λi ≥ 0, ti ∈ [0, 1], ui ∈ P such that

λi(ti(y ± z) + (1 − ti)(y + x)) + ui → y. (15)

Then
〈
x∗, λi(ti(y ± z) + (1 − ti)(y + x)) + ui

〉 → 〈
x∗, y

〉 = 0

⇒ λi(1 − ti)
〈
x∗, x

〉 + 〈
x∗, ui

〉 → 0

⇒ λi(1 − ti) → 0 and
〈
x∗, ui

〉 → 0.
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If there is a subsequence of {λi} converging to 0 then we get from (15) that ui → y
(since λi is multiplied with a bounded vector). This implies that y ∈ P = P which
contradicts 〈x∗, y〉 = 0.

If there is a subsequence of {λi} converging to a number λ ∈ ]0, +∞[ then ti → 1
and we get from (15) that ui → y − λ(y ± z). Since P is closed, this implies that
y − λ(y ± z) ∈ P. But 〈x∗, y − λ(y ± z)〉 = 0 while 〈x∗, u〉 > 0 for all u ∈ P \ {0}. Hence
y − λ(y ± z) = 0. This is impossible, in view of the linear independence of y and z.

It follows that λi → +∞. Then ti → 1, and from λi(1 − ti) → 0 and (15) we obtain
λiti(y ± z) + ui → y. Thus, y ± z + ui

λiti
→ 0 and ui

λiti
→ −(y ± z). However, ui

λiti
∈ P

thus its limit should be in P. As before, this should imply that y ± z = 0 which again
contradicts the linear independence of y and z.

Thus, y /∈ cone (A + P). Since y ∈ co (cone (A + P)), we deduce that cone (A + P)

is not convex. This contradicts (a).
To show that (b) implies (a), we simply remark that if cone (A) + P is convex then

its closure cone (A) + P is convex, and this is equal to cone (A + P) by Proposition
2.1(d). The same proposition shows that (c) implies (a). Finally, (d) implies (b) and
(c) by Theorem 4.1. �

Remark 4.3 The assumption int P∗ �= ∅ (which corresponds to pointedness of P
when Y is finite-dimensional) cannot be removed. Indeed, let P = {y ∈ Y : 〈p∗, y〉 ≥ 0}
where p∗ ∈ Y∗\{0}. Then P∗ = cone ({p∗}), int P∗ = ∅. For any nonempty A ⊆ Y, the
set A+ int P is convex. Thus, (c) in Theorem 4.2 holds independently of the dimension
of the space Y.

5 Some applications

5.1 Characterizing the zero (Lagrangian) duality gap

We now obtain various equivalent conditions to the zero (Lagrangian) duality gap for
a class of nonconvex minimization problems under a Slater-type condition.

Let us consider the following constrained minimization problem

µ
.= inf

x∈K
f (x), (16)

where K .= {x ∈ C : g(x) ∈ −P}, C is a nonempty subset of a real locally convex
topological vector space X, f: C → R, and g : C → Y, with Y as before and P ⊆ Y
is a closed convex cone with nonempty interior. Let us introduce the Lagrangian

L(λ∗, x) = f (x) + 〈λ∗, g(x)〉.
Obviously,

µ ≥ inf
x∈C

L(λ∗, x) ∀ λ∗ ∈ P∗. (17)

We set

A .=
{
(f (x) − µ, g(x)) ∈ R × Y : x ∈ C

}
.

Theorem 5.1 Let us consider problem (16). If µ is finite and the Slater-type condition
that for some x0 ∈ C, 〈y∗, g(x0)〉 < 0 for all y∗ ∈ P∗ \ {0} holds, then the following
assertions are equivalent:
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(a) there exists a Lagrange multiplier λ∗ ∈ P∗ such that

inf
x∈K

f (x) = inf
x∈C

L(λ∗, x);

(b)

inf
x∈K

f (x) = max
λ∗∈P∗ inf

x∈C
L(λ∗, x);

(c) cone(A + int( R+ × P)) is pointed.

Proof (a) ⇐⇒ (b): One implication is obvious. From (a) it follows that

µ ≤ max
λ∗∈P∗ inf

x∈C
L(λ∗, x),

which together with (17) imply (b).
(c) �⇒ (a): Applying Theorem 3.2 we infer that co(A) ∩ (−int( R+ × P)) = ∅. By the
convex separation theorem, we obtain γ ∗ ≥ 0 and λ∗ ∈ P∗, not both zero, satisfying

γ ∗f (x) + 〈λ∗, g(x)〉 ≥ γ ∗µ ∀ x ∈ C. (18)

If γ ∗ = 0, then 0 �= λ∗ ∈ P∗ and 〈λ∗, g(x)〉 ≥ 0 for all x ∈ C, contradicting the
Slater-type condition. Therefore, we may assume γ ∗ = 1 in (18). Hence,

f (x) + 〈λ∗, g(x)〉 ≥ µ ∀ x ∈ C, (19)

which implies

inf
x∈C

L(λ∗, x) ≥ µ.

This together with (17) yield the desired result.
(a) �⇒ (c): From (a), (19) holds, and this amounts to writing

〈(1, λ∗), (f (x) − µ, g(x))〉 ≥ 0 ∀ x ∈ C.

We then apply Theorem 3.2 to get (c). �

5.2 Characterizing weakly efficient solutions through scalarization

Let X be a real vector space, K ⊆ X a convex set and Y a real locally convex topo-
logical vector space. Given a vector mapping F: K → Y, we consider the problem of
finding

x̄ ∈ K : F(x) − F(x̄) �∈ −int P, ∀ x ∈ K,

where P ⊆ Y is a closed convex cone such that int P �= ∅ (see Sect. 3). The set of such
x̄ is denoted by Ew, and its elements are termed weakly efficient solutions. Clearly

x̄ ∈ Ew ⇐⇒ (F(K) − F(x̄)) ∩ (−int P) = ∅.

For a real-valued function h, by argminKh we mean the set of minimum points of h
on K.

The next theorem is a direct consequence of Corollary 3.3 with G(x) = F(x)−F(x̄).

Theorem 5.2 Let K ⊆ X be a convex set and F, P as above. The following assertions
are equivalent:
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(a)

x̄ ∈
⋃

p∗∈P∗,p∗ �=0

argminK〈p∗, F(·)〉;

(b) cone(F(K) − F(x̄) + int P) is pointed.

In case Y = R
2, we get the following theorem whose proof follows from Theorem

4.1.

Theorem 5.3 Let K ⊆ X be a convex set and F, P as above with Y = R
2. Then the

following assertions are equivalent:

(a)

x̄ ∈
⋃

p∗∈P∗,p∗ �=0

argminK〈p∗, F(·)〉;

(b) x̄ ∈ Ew and cone(F(K) − F(x̄) + int P) is convex.

Notice that the cone appearing in (b) of the preceding theorem may be substituted
by others cones by virtue of Theorem 4.1.

Remark 5.4 Some sufficient and in some situations also necessary conditions to get
Ew �= ∅ are established in [7, 8].

5.3 Characterizing the Fritz–John type optimality conditions in vector optimization

For simplicity we now consider X to be a real normed vector space. It is well known
that if x̄ is a local minimum point (in the usual sense) for the real-valued differentiable
function F on K, then

∇F(x̄) ∈ (T(K; x̄))∗. (20)

Here, T(C; x̄) denotes the contingent cone of C at x̄ ∈ C, defined as the set of vectors
v such that there exist tk ↓ 0, vk ∈ X, vk → v such that x̄ + tkvk ∈ C for all k; C∗
denotes the (positive) polar cone of C.

It is now our purpose to extend the previous optimality condition to the vector case
without smoothness assumptions. More precisely, let K ⊆ X be closed and consider a
mapping F: K → R

n. Given a closed convex cone P ⊆ R
n with nonempty interior,

a vector x̄ ∈ K is a local weakly efficient solution for F on K, if there exists an open
neighborhood V of x̄ such that

(F(K ∩ V) − F(x̄)) ∩ (−int P) = ∅. (21)

Following [15], we say that a function h: X → R admits a Hadamard directional
derivative at x̄ ∈ X in the direction v if

lim
(t,u)→(0+,v)

h(x̄ + tu) − h(x̄)

t
∈ R.

In this case, we denote such a limit by dh(x̄; v).
If F = (f1, . . . , fn), we set

F(v)
.= ((df1(x̄; v), . . . , dfn(x̄; v)), F(T(K; x̄)) = {F(v) ∈ R

n : v ∈ T(K; x̄)}.
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It is known that if dfi(x̄; ·), i = 1, . . . , n do exist in T(K; x̄), and x̄ ∈ K is a local weakly
efficient solution for F on K, i.e., x̄ satisfies (21), then (see for instance Lemma 3.2 of
[15])

(df1(x̄; v), . . . , dfn(x̄; v)) ∈ R
n \ −int P, ∀ v ∈ T(K; x̄)

or equivalently, F(T(K; x̄))∩ (−int P) = ∅. The following theorems provide complete
characterizations for the validity of (a) as a necessary condition for x̄ to be a local
weakly efficient solution for F on K.

Theorem 5.5 Let K ⊆ X be a closed set, P ⊆ R
n be a closed convex cone such that

int P �= ∅, and F : K → R
n be a mapping. Set F = (f1, . . . , fn) and assume that

x̄ ∈ K and dfi(x̄; ·), i = 1, . . . , n do exist in T(K; x̄). Then, the following assertions are
equivalent:

(a) ∃ (α∗
1 , . . . , α∗

n) ∈ P∗ \ {0}, α∗
1df1(x̄, v) + . . . + α∗

ndfn(x̄, v) ≥ 0 ∀ v ∈ T(K; x̄);
(b) cone(F(T(K; x̄)) + int P) is pointed.

Proof We apply Corollary 3.3 to obtain the desired result. �

When Y = R
2, more precise formulations can be obtained from Theorem 4.1.

Theorem 5.6 Let K ⊆ X be a closed set, P ⊆ R
2 be a closed convex cone such that

int P �= ∅. Set F = (f1, f2) and assume that x̄ ∈ K and dfi(x̄; ·), i = 1, 2 do exist in
T(K; x̄). Then, the following assertions are equivalent:

(a) ∃ (α∗
1 , α∗

2) ∈ P∗ \ {0}, α∗
1df1(x̄, v) + α∗

2df2(x̄, v) ≥ 0 ∀ v ∈ T(K; x̄);
(b) F(T(K; x̄)) ∩ (−int P) = ∅ and cone(F(T(K; x̄)) + int P) is convex.

Remark 5.7 When P = R
n+ and f1, . . . , fn are differentiable, Part (a) in Theorem 5.5

can be written as

co({∇fi(x̄) : i = 1, . . . , n}) ∩ (T(K; x̄))∗ �= ∅, (22)

which is the natural extension of (20). However, we have to point to out that (22)
is not in general a necessary optimality condition for x̄ to be a local weakly efficient
solution. This is shown in R

2 by the example taken from [2] (see also [4, 18] for
additional discussion):

K = {(x1, x2) : (x1 + 2x2)(2x1 + x2) ≤ 0}, fi(x1, x2) = xi, x̄ = (0, 0).

In this case T(K; x̄) = K, which is nonconvex, thus (T(K; x̄))∗ = {(0, 0)}, and therefore
(22) does not hold since co ({∇f1(x̄), ∇f2(x̄)}) = co {(1, 0), (0, 1)}. Notice also that

cone
(
F(T(K; x̄)) + R

2+
)

=
⋃

t≥0

t
(

T(K; x̄) + R
2+
)

is nonconvex. On the other hand, due to the linearity of F (when f1 and f2 are
differentiable), if T(K; x̄) is convex then

cone
(
F(T(K; x̄)) + R

2+
)

=
⋃

t≥0

t
(
F(T(K; x̄)) + R

2+
)

is also convex. This fact was pointed out earlier in [17] (see also [4]). Therefore, (22)
holds if T(K; x̄) is convex. The following example shows that the necessary optimality
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condition (22) may be true without the convexity of T(K; x̄). Take the same mapping
F as before and

K =
{
(x1, x2) ∈ R

2+ : x1x2 = 0
}

, x̄ = (0, 0).

Then, (22) holds since in this case, T(K; x̄) = K, (T(K; x̄))∗ = R
2+ and

co ({∇f1(x̄), ∇f2(x̄)}) = co {(1, 0), (0, 1)} .
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